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1.   Introduction 

Since Robbins (1956, 1964), the empirical Bayes approach to statistical problems 

has generated considerable interest among the researchers. Empirical Bayes procedures 

have been extensively studied in the literature. To name a few, Lin (1975) and Singh 

(1976, 1979) considered empirical Bayes estimation for the one parameter exponential 

family, and Singh and Wei (1992) studied empirical Bayes estimation in a nonnegative 

exponential family. Johns and Van Ryzin (1972), Van Houwelingen (1976) and Stijnen 

(1985) studied empirical Bayes tests for one-parameter continuous exponential family, while 

Johns and Van Ryzin (1971) and Liang (1988) considered empirical Bayes one-sided tests 

for a discrete exponential family. Empirical Bayes procedures have also been studied for 

non-exponential family distributions, see Huang (1995) and the cited references there. In 

this paper, we study the empirical Bayes two-tail tests in a discrete exponential family. 

Our research interest is motivated by Wei (1991) in which an empirical Bayes two tail test 

was investigated. 

Let X denote a random variable arising from a discrete exponential family with prob- 

ability function 

f(x\9) = a(x)ß(9)9x,   x = 0,1,2,...; 0 < 9 < Q (1.1) 

where a(x) > 0 for all x = 0,1,2,..., and Q may be finite or infinite. Consider the 

problem of testing HQ : 9 € [9i,92] versus Hi : 9 g [9i,92], where 0 < 9i < 92 < oo are 

known constants. This type of testing hypotheses may arise from social studies, engineering 

problems or environmental sciences. For example, one may like to see if there is any change 

of the frequency of rainfalls during the last several years. Let i, i = 0,1, denote an action 

deciding in favor of the hypothesis Hj. For the parameter 9 and action i, the loss function 

is defined to be: 

L(9,i) = (1 - i)(9 - 9i){9 - 92)I(9 £ [8U62]) + i(9 - 9i){92 - 9)1(9 e [9i,92]),     (1.2) 

where 1(A) denotes the indicator function of the event A. 

If we let 90 = (öi + 92)/2, c = (92— #i)/2, then the testing hypotheses can be written 

as HQ :   \9 — 9Q\ < c versus Hx :   \9 — 9Q\ > c, and the loss function is 

L(9,i) = (1 - i){(9 - 90)
2 - c2]I(\9 -90\>c) + i[c2 -(9- 90f}I(\9 - 90\ < c).    (1.2') 
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Note that 0 < c < 90. 

It is assumed that the parameter 9 is a realization of a random variable 0 having an 

unknown prior distribution G over the parameter space Q, = (0, Q). 

Let X be the sample space generated by X. A test 8 is defined to be a mapping from 

X into [0,1], so that S(x) is the probability of taking action 0 when X = x is observed. 

That is, S(x) = P{accept HQ \X = x}. Then for each x = 0,1,2,... 

L(9,6(x)) = S(x)[(9 - d0)
2 - c2} - {(9 - 90)

2 - c2]I(\9 - 90\ < c). 

We consider only those priors G such that j 92dG{9) < oo to insure that the Bayes 

risk is always finite, and hence, the testing problem is meaningful. This assumption always 

holds when Q is finite. 

Let r(G,S) denote the Bayes risk of the test S. By Fubini's theorem, we have: 

oo 

r(G,tf) = £ S(x)H(x)f(x) + C, (1.3) 
x=Q 

where 

H(x) = <p(x + l)<p(x) - 290if(x) + 92
0- c2; (1.4) 

ip(x) = E[6\X = x] = ^5iris the P°sterior mean of 0 Siven X = x> f(x) = ff(x\9) 

dG(9) = a(x) f ß(9)9xdG(9) = a(x)h(x) is the marginal probability function of X, and 

C = f[c2 -(9- 9o)2]I{\9 - 0o | < c)dG{9). 

From (1.3), a Bayes test, say 6a, is clearly given by: 

f 1    if H(x) < 0, 
£G(*) = | (1.5) 

v 0    otherwise. 

The minimum Bayes risk is: 

oo 

r(G, <^G) = J2 SG(x)H(x)f(x) + C. (1.6) 
i=0 

When the prior distribution G is unknown, this testing problem has been studied by 

Wei (1991) via the empirical Bayes approach.  Our interest is motivated by the result of 



Wei (1991), in which under certain strong conditions, Wei (1991) proved that his proposed 

empirical Bayes test may achieve a rate of convergence with order near the "best" possible 

rate 0(n~l), where n is the number of historical data at hand for the present testing 

problem. Basically, Wei's approach is along the line of Johns and Van Ryzin (1971). 

Though this rate sounds good, the conditions can be reduced and the rate can be much 

improved. 

This paper is organized in the following way. In Section 2, we first examine the 

behavior of the Bayes test 6Q, and then construct an empirical Bayes test that 8n by 

mimicking the behavior of the Bayes test So- The asymptotic optimality of the empirical 

Bayes test 8n is investigated in Section 3. It is shown that under very mild regularity 

conditions, the empirical Bayes test 8n is asymptotically optimal of order 0(exp (-en)) 

for some constant c > 0. This result much improves that of Wei (1991). Finally, certain 

examples and some further results are given in Section 4. 

2.   Construction of Empirical Bayes Test 

2.1   Properties of Bayes test 8Q 

First note that the posterior mean tp(x) = ^}' is increasing in x for x = 0,1,2,...; 

and is strictly increasing if the prior distribution G is non-degenerate. Let 

A = {x\<p(x) > 90 + c}, and 

B = {x\ip(x) < 0o -c}. 

Define 
(\x& A    if A 7^^, 

a' = 
I oo        if A = <j>; 

fsnpB    iiB^<t> 
b* = \ (2.1) 

I -1        if B = <f>; 

where (f> denotes the empty set.   By the definition of a* and 5*, and by the increasing 

property of 9?(x), we have: b* < a* and 

tp(x) > <p(a*) > 9o + c     for all     x > a*, 
(2.2) 

V(y) <9(&*) < ^o - c     for all     y < b*. 



We consider only non-degenerate prior distributions G so that <p(x) is strictly increasing 

in x. 

Proposition 2.1 

(a) Fora; >a*,H(x) > 0. 

(b) Forx<b*,H(x) >0. 

Proof:   (a) By the strictly increasing property of <p{x) and (2.2), for x > a*, 

H{x) = <p(x + l)(p(x) - 280<f(x) + 0l-c2 

> v2(x) - 200tp{x) + 9l-c2 

>0. 

Part (b) can be obtained in a similar way. The detail is omitted. D 

Let D = {x|.ff(a0 < 0}. If D ^ <f>, define d2 = supD and dx = inf D. From 

Proposition 2.1, b* < d\ < d2 < a*. 

Proposition 2.2 If <p(x) is linear in x, the set D consists of all integers between (including) 

d\ and d2- 

Proof: Under the assumption, ip(x) = ax + b for some constants a > 0 and b. Plugging 

this linear form of f(x) into H(x), we obtain 

H(x) = a2 x2 + 2x[ab - a60 + a2] + (b - 9Q)
2 + ab - c2, 

which is a convex function of x.   Therefore, Proposition 2.2 is concluded by noting the 

definitions of d\ and d2. D 

Proposition 2.2 well describes the behavior of the Bayes test 8Q. That is, as soon as 

d\ and d2 are determined, then the Bayes test SQ is determined. However, without the 

assumption of the linearity of the posterior mean <p(x), it is not known whether Proposition 



2.2 still holds or not.    Even though, from Proposition 2.1, the Bayes test 8Q can be 

represented as: 
{0    if 0 <&*) or (x >a*) 

or (b* < x < a* and H(x) > 0); ^^ 

1    if b* < x < a* and H(x) < 0. 

It should be noted that Proposition 2.1 is based on the increasing property of the 

posterior mean <p{x). Hence, in the following, to construct an empirical Bayes test, we 

first construct a monotone empirical Bayes estimator for <p(x). 

2.2.   Empirical Bayes Framework and Estimation of (p(x) 

In the empirical Bayes approach, let (X,-, 0,-),i = 1,2,..., be iid with (X, 0), where 

X{,i = 1,2,..., are observable and Qi,i = 1,2,... are not observable. At time n + 1, 

X(n) = (X\,... ,Xn) denotes the historical data and Xn+i denotes the present random 

observation and one is interested in testing #0,71+1 : |#n+i — #o| < c versus fFijTl+i : 

\9n+i — #o| > c with the loss L(0n+i,i) given in (1.2'), where #n+1 is a realization of the 

random parameter Qn+x- A test Sn, called as an empirical Bayes test, is a function of the 

present observation Xn+i = x and the historical data X{n), such that 8n(x, X{n)) = 8n(x) 

is the probability of accepting the hypothesis i?o,n+i- Let r{G,8n\X{n)) be the Bayes 

risk of the empirical Bayes test 8n conditioning on X(n). Also, let r(G,8n) = Ex(n) 

r(G,8n\X(n)) denote the overall Bayes risk of 8n, where the expectation Ej£,n^ is taken 

with respect to the probability measure generated by X(n). 

Since r(G,8a) is the minimum Bayes risk, r(G,8n) > r(G,8o) for all n. The non- 

negative regret Bayes risk r(G, 8n) — r(G, 8G) is used as a measure of performance of the 

empirical Bayes test 8n. A sequence of empirical Bayes tests {8n}^=1 is said to be asymp- 

totically optimal relative to the prior distribution G if r((?, 8n) — r(G, 8G) = o(l); {^n}^Li 

is said to be asymptotically optimal relative to the prior distribution G of order {an} if 

r(G,8n) — r(G,8c) = 0(an), where {a^^L-^ is a sequence of positive numbers such that 

lim an = 0. 
n—*oo 

Wei (1991) had studied an empirical Bayes two-tail test for this testing problem. 

Under certain strong regularity conditions, Wei (1991) proved that his proposed empirical 



Bayes test is asymptotically optimal of order near 0(n 1). His empirical Bayes test is 

based on an alternative form of the Bayes test that 

SG(x) = l    iff    j(x) = h(x)H(x) = h(x + 2)-260h(x + l) + h(x)[62
0 - c2] < 0. 

He then constructed an empirical Bayes estimator jn(x) for j(x), and his empirical Bayes 

test 8™ is defined as: 8^(x) = 1 iff jn(x) < 0. Though 8™ is asymptotically optimal, 

such an approach ignores the monotinicity of the posterior mean <f(x). In the following, 

we first construct a monotone empirical Bayes estimator, say (pn{x)-, for <p(x). Then based 

on <pn(x), we propose an empirical Bayes test 8n which possesses properties similar to that 

of Proposition 2.1. 

We let {w(x)}^L0 be a sequence of positive numbers such that the following condition 

holds. 

Condition Cl.    £ w(x) < oo and both the sequences j ^|2 i        and j ^£i_ 

nonincreasing in x, and bounded above by 1. 

Based on the historical data, let mn = min(Xi,..., Xn) and Mn = 

max (Xi,..., Xn) — 1. For each x = 0,1,..., define 

are 
x=0 

j-x 

whn{x) /n(g) 
a(x) + en; 

(2.4) 

where en > 0 is such that en = o(n  x). For each y = 0,1,..., let 

My) = YJ   hn(x + l)w(x), 
x=0 

V' (y) = 
y 

Y,   h{x + l)w(x), 
x=0 

Kn(y) = 
y 
Y   hn(x) w(x), 
x=0 

K (y)  = 
y 
Y   h{x) w(x). 
i=0 

(2.5) 



Also, let ^n(-l) = 0(-l) = Kn(-l) = A'(-l) = 0. Next, define 

'My) Vnirrin) =      min 
ff„(v)J' 

(2.6) 

and for each x = mn + 1,..., Mn, recursively define 

i>n{y) -i>n{x-i) 
ifin(x) =    min 

x<y<Mn 

(2.7) 
Ä'n(y) - A'n(x - 1)_ 

where 
X 

$n(x) = J2 V>n(*) MO w(i) (2.8) 
i=0 

and <p%(i) = <y5n(0 if mn < i < x and y£(i) =     w"f)   ^or * < m«- Finally, for 0 < x < mn, 

define (pn{x) — </?n(mn) and for x > Mn let (pn(x) = <pn(Mn). 

It should be noted that {<pn(x)}%bm^ is the isotonic regression of {(pn(x)}^bm with 

weights {hn(x)w(x)}^mn where <pn(x) = 1 (x) w^cn is a consistent estimator of <p(x). 

Therefore, <fn(x) is also a consistent estimator of <p(x), see BBBB (1972). We state the 

result as a Lemma without providing the proof. 

Lemma 2.1   For each x = 0,1,... ,<pn(x) converges to <p(x) in probability. 

2.3   Empirical Bayes Test 6n 

By mimicking the form of (1.4) - (1.5), an empirical Bayes test 8n is constructed as 

follows:   For each Xn+i = x, let 

Hn(x) = <pn{x + l)<pn(x) - 260<pn(x) + 02
0- c2, (2.9) 

and 
(1    if#n(x)<0, 

Sn(x) = < (2.10) 
^ 0    otherwise. 

Given X(n), the conditional Bayes risk of Sn is 

oo 

r(G,8n\X(n)) = Y,  ~Sn(x)H(x)f(x) + C, (2.11) 

8 



and the overall Bayes risk of 6n is 

oo 

r(G,6n) = £ EX{n) [6n(x)]H{x)f{x)+C. (2.12) 
x=0 

For each n, let An = {x\pn(x) > 0O + c] and Bn = {x\$n{x) < 90 - c}. Define 

inf An    if An 7^ <f>, 
an = 

oo if An = <f>; 

K = (2.13) 
sup5„    iiBn^(j), 

-1 if Bn = <f>. 

Note that (pn{x) is nondecreasing in x. Therefore, by the definitions of an and bn, bn < an, 

and 
<fn{x) > <Pn(än) > &0 + C     for all X > än, 

k <£n(y) < ¥n(bn) < 00 - c    for all y <bn. 

By the nondecreasing property oi(pn{x) and (2.14), similar to Proposition (2.1), Hn(x) > 0 

for all x > an and for all x <bn. Hence, the empirical Bayes test 8n can be represented 

as: 

Sn(x) = 

' 0    if (x < bn) or (x > an) 

or (bn < x < än and Hn(x) > 0), (2.15) 

1    if 6n < x < 5„ and Hn(x) < 0 

which is similar to that of (2.3). 

Remark 2.1 

(a) Since {£n(x)}£L"mn is the isotonic regression of {<fn(x)}^mri with weights 

{hn(x)w{x)}*!?mn, by BBBB (1972) and by the definitions of $n(z) and ißn(z), 

i>n(z) < i>n{z) for all z = 0,1,..., Mn. Therefore, for each x = mn,..., Mn, 

<pn(x) =     min 
x<y<Mn 

>     min 
x<y<Mn 

My) -i>n(x -l)' 
Kn{y) -Kn(x - 1) 

*l>n(y) ~^n(x -1) 
Kn(y) -A'n(x-l) 

(2.16) 



(b) Following Puri and Singh (1990), the isotonic regression estimators {(pn(x)}^mn can 

also be derived in an alternative way. 

Define 

ipn(Mn) =     max 
mn<y<Mn 

MMn) - My -1) 
Kn(Mn)-Kn(y-l) 

and for each x — Mn — 1,..., mn, recursively define 

<pn(x) —    max 
mn<y<x 

[^n(Mn) - V^n(y - 1)] -     X)      Vn(0An(*M*)n 

üfB(x) - üfn(y - 1) 

Then, ifn(x) = (fn(x) for all a; = m„,..., Mn. Also, 

Mn Mn 

i=i+i i=x+l 

(2.17) 

(2.18) 

J2      Vn(i)hn(i)w(i)>    Y,      hn(i + l)w(i)=MMn)-M*)- (2-19) 

Combining (2.18) and (2.19) yields 

'[MMn) - My - i)]-bl>n(Mn)-Mx)] (fin(x) <     max 

=     max 

Kn(x)-Kn(y-l) 

7pn(x) -^n(y-l) 
mn<j,<i   LA'n(x) - jFCn(y - 1)_ 

(2.20) 

3.   The Main Results 

We state our main results of the paper as two theorems as follows. 

Theorem 3.1 Suppose J 82 dG(9) < oo and Condition Cl holds. Then, the empirical 

Bayes test 8n is asymptotically optimal in the sense that r(G,8n) — r(G,6c) = o(l). 

Theorem 3.2 Suppose that / 92 dG{6) < oo, Condition Cl holds and a* is finite. Then 

r(G,Sn) - r(G,Sa) = 0(exp (—rn)) for some positive constant r = T(G) depending on 

the prior distribution G. 

We provide the proof of Theorem 3.1 as follows. 

10 



Proof of Theorem 3.1 

Let Si = {s|6* + l<x<a*-l, H{x) < 0} and S2 = {x\b* + 1 < x < a* -1, H(x) > 

0}..From (1.5), (1.6), (2.10), (2.11) and by the definition of a* and b*, 

6* 

r(G, ~8n) - r(G, Sa) = £ H(x) f(x) P{Hn{x) < 0, H(x) > 0} 
x=0 

+    Y,   [-H(x)} f(x) P{Hn(x) > 0, H(x) < 0} 
x 6 Si 

+    Y    HW /(*) p{Hn(x) < 0, H(x) > 0} (31) 
x <= S: 2 

+     JT     H(x) f(x) P{Hn(x) < 0, H(x) > 0} 
x=a* + l 

< £ |2T(s)|/(*), 
x=0 

<2 oo 

where J2 = 0 if d < c and   ^   — 0- 
x=c x=oo 

Since 

\H(x)\ = \E[e2\X = x] - 290 E[G\X = x] + 62 - c2\ 

< E[G2\X = x] + 260E[O\X = x] + |0jj-c2|, 

oo 

J2 \B(x)\ f{x)  = EX[\H(X)\] 
x=0 

< Ex[E[e2\X}}+ 290 EX [E[e\x]] + \e2-c2\ 

= E[e2} + 260E{G] + \92-c2\ 

< oo 

by the assumption that f 92 dG(9)  <  oo. 
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Hence, to show that r(G,8n) — T(G,8G) = o(l), it suffices to prove that for each x 

with H(x) > 0, P{Hn(x) < 0, H{x) > 0} -> 0 as n -> oo, and for each x with ff(x) < 0, 

P{Hn(x)   >  0, fl"(x) < 0} -> 0 as n -> oo. 

Since fl"„(x) = <£„(x + 1) <^«(x) - 20o <pn(x) + #o ~ °2> where ^„(a:) -> <p(x), 

<fn(x + !)—*■ ip(x + 1) in probability by Lemma 2.1, so, Hn(x) —► iJ(x) in probability. 

Hence, both P{Hn(x) > 0, F(z) < 0} and P{Hn(x) < 0, H{x) > 0} converge to 0 as 

n —» oo. Therefore the proof is complete. D 

3.1   Preliminary Analysis 

For providing a precise proof for Theorem 3.2, we first do certain preliminary analysis. 
b" 

When b* = -1, in (3.1), the term £   H(x) f(x) P{Hn{x) < 0, H(x) > 0} is equal to 0. 
x=0 

Hence, in the following, we may assume that b* > 0. 

Define the following events: 

#i = {bn = b*, an = a*}, 

A1 = {ln<b*-l or ln > b* + 1}, 

A2 ={bn = b* + 1}, 

B\ — {an < a* — 1 or an > a* + 1}, 

B2 = {an = a* + 1}, 

E2 = {mn < b* and Mn > a* + 2}. 

Then, E{  =    U     U   (A{ Bj) and E\ = {mn > b* or M„ < a* + 2}. 
i=l   i=l 

Conditioning on X(n), the regret Bayes risk of 8n is: 

r(Gjn\X(n))-r(G,8G) 

oo 

= J2 f(x) H(x)[8n(x) - 8G(x))IE° 
x=0 
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+ ]T f(x) H{x) [Sn(x)-SG(x)]IElE2 
x=0 

oo 2 2 

+  £ fix) Hix) [Sn(x) - SG(x)] £ J2 iAtBtE,- 
x=0 i=l   j=l 

By the definitions of the events E\ and A2B2 and the tests 8n and 6G, 

OO 

Y,f^)H(x)[Sn(x)-SG(x)]IElE2 
1=0 

a*-l 

=      S     f(X) H(X) ^n(X) ~S°iX^ IExE2] 
x=b*+l 

00 

^2f(x) H(x) [Sn(x) - 6G(X)]IA2B2E2 

x=0 

a* 

=       X^       fW H(X)   fin(x) ~ 6G(x)}  IA2B2E2- 
I=6*+1 

Therefore, the overall Bayes risk of the test 8n is: 

r(Gjn)-r(G,SG) 

= Ex(n) [r(G,6n\X(n)) -r(G,SG)) 

00 

= Y, f(x) Hix) Ex{n)[(6n{x)-6G(x))lE-] 
1=0 

a*-l 

+     £    f(x) H(x) EX{n)[CSn(x)-6G(x))IElE2 

x=b* + l 

+       J2       M HiX) EX{n)[itnix) ~ 8G{X))IA,B2E2 
x=b* + l 
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+   X   fW H(X) EX(n)i(Ön(x)-6G(x))(IAlBlE2    +   IAlB2E2    +   IAIB^)]- 
x=0 

(3.6) 

We can obtain the following results: 

(a) 

oo 

X /(*) H{x) EX(n)[(6n(x) - SG(x)) IE<] 
x=0 

= E(X(n),x) [H(X)(6n(X) - SG(X)) IE>] 

= EX [\H(X)\]EX(n)[IE<] 

since X and X(n) are independent. 

From (3.2), EX[\H(X)\] < oo. By the definitions of mn and Mn, 

EX{n)[IEl\ = P{mn > b* or Mn <a* + 2} 

< P{mn >b*}+ P{Mn < a* + 2} 

= [F(b*)]n +  [F(a*+2)]n 

=  exp[-n ^n(F(6*))_1] + exp[-n ln(F(a* + 2))"1] 

= 0(exp(-rxn)), 

where F is the marginal distribution function of the random variable X, F(x) = 1 — F(x) 

and Ti = mm(£n(F(b*))-\en(F(a* +2))-1) > 0. Therefore, 

oo 

X /(*) H(x)EX{n)[(8n(x) - SG{x))lEt] = 0(exp(-r1n)). (3.7) 
x=0 
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(b) 

a*-l 

£    /(*) H(x) Exw[(6n(x) - SG(x))IElE2] 
x=6*+l 

=    J2   [~H(x)]f(x)P{6n(x) = 0,6G(x) = 1  and EXE2 occurs} (3.8) 
x € Si 

+    J2    H(x) f(x)P{8n(x) = 1, 8G(x) = 0 and EXE2 occurs}. 
x € S2 

(c) 

£    H{x) f{x)EX(n)[(8n{x) - *<?(*))!* Wa] 

=    Y^   i-H(x)] f(x)P{8n(x) = 0,8G{x) = 1 and A252£2 occurs} 
i € Si 

4-    5Z    ff(x) -f(x) p{^(x) = MGO) = 0, and A2B2E2 occurs} 
x € s2 

+ H{a*) f{a*)P{8n(a*) = MG(0 = 0 and A2B2E2 occurs}, 

(d) 
oo 

x=0 

(3.9) 

(3.10) 

ZEiXwMlWiXWA^+lBtEt)] 

= Ex[\H(X)\]{EXin)[IAlE2} + EX{n)[IBlE2}}.- 

In (3.8) - (3.10), 0 <    £   \-H{x)\f{x) < EX[\H{X)\) < oo, 0 <    £    H(x) f(x) < 
x € Si x € S2 

-Ex[|#(-X")|] < 00.   Note that under the assumption that a* is finite, both Si and S2 

are finite sets. Therefore, to investigate the asymptotic behavior of the regret Bayes risk 
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r{G, 8n) — r(G,So), it suffices to investigate the asymptotic behaviors of the following 

terms: 
Di = P{8n(x) = Q,SG(X) = 1 and E\E2 occurs } for x  £  Si, 

D2 = P{8n(x) = 1,6G(X) = 0, and E1E2 occurs } for x  6  5*2, 

Dz = P{8n(x) = 0,SG(X) = 1, and A2B2E2 occurs } for x  €  Si, 

£>4 = P{8n(x) = 1,6G(X) = 0 and A2B2E2 occurs } for x  €  S2, 

D5 = P{8n(a*) = l,8G(a*) = 0 and A2B2E2 occurs } 

£>6 = Ex{n)[IAlE2] and D7  = EX{n)[IBlE2]- 

(I) By the definitions of the tests 8n and 8Q, for x  €  Si, 

Di = P{6n(x) = 0,8G(X) = 1 and EiE2 occurs.} 

= P{Hn(x) - H(x) > -H{x) and EiE2 occurs } 

= P{[?n(x + 1) - </?(x + l)]<^n(a;) + [<p(x + 1) - 2öo][^n(x) - <^(x)] > -fT(x) 

and E1E2 occurs } 

H(x) 
< P{[ipn(x + 1) - (f(x + l)]<fn(x) > ^ and E\E2   occurs } 

H(x) 
+ P{[<p(x + 1) - 260][<pn(x) - (p(x)] > ~ and ExE2 occurs } 

= Dn+D 12- 

On Ei, for x  G  5i, 0 < 0O - c < <pn{x) <00+c<26Q. So 

•Du < P{$n{x + 1) - <p(x + 1) > —jr-t- and ü^ occurs}. 

Also, for £ €  Si, if x + 1 < a*, then by the definition of a*, do — c < ip(x + l) < 9o+c < 290. 
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Hence, 
H(x) 

D12 = P{£n(x) - <p(x) <        ^ _        +       and EXE2 occurs } 

H(x) 
< P{(pn{x) — (fi(x) < —— and EXE2 occurs }. 

When x + 1 = a*, there are three cases:   <p(a*) < 20o or <p(a*) = 280 or <p(a*) > 260. 

Hence, 

H(x) 
Dx2 = P{[p{a*) - 260][<pn(x) - ip(x)] > Y~ and E*E*  occurs } 

' P{$n(x) - <p(x) < 4^ and EXE2 occurs }      if <p(a*) < 200, 

<  } 0 iiV(a*) = 260, 

k P{<pn(x) - f(x) > =£$ and EXE2 occurs }    if <p(am) > 290. 

(II) For a;  €  S2, 

D2 = P{8n(x) = 1,8G(X) = 0 and EXE2 occurs } 

= P{Hn(x) - H(x) < -H(x) and EXE2 occurs } 

= P{[<pn(x + 1) - <p(x + l)]<pn(x) + [*>(* + 1) " 26o][pn(x) - <p(x)] < -H(x) 

and EXE2 occurs } 

<P{[<Pn(x + 1) - <p(x + l)]tpn(x) < ^- and EXE2 occurs } 

+ P{[v?(z + 1) - 2ö0][vn(a?) - ¥>(*)] < 9     ^ -^1^2 occurs } 

= D2X+D22, 

where by an argument analogous to that for Dx, 

H(x) 
A>i < P{$n{x + 1) - <p(x + 1) < —-^ and £i£2 occurs }, 
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and 

H(x) 
D22 = P{[<p(x + 1) - 260][<pn{x) - <p(x)] < ^ and EXE2 occurs} 

' P{Cpn(x) - <p(x) > f^1 and EXE2 occurs} if <p(x + 1) < 20o, 

<  J 0 if <p(x + 1) = 20o 

w P{(pn(x) - tp(x) < -2
H(a*) and -^1-^2 occurs}    when x + 1 = a* and y(a*) > 20o. 

(Ill) Similarly, on A2B2E2, for x € Si, 0 < <£n(a0 < ^0 + c < 20o, and 

D3 = P{8n(x) = 0,6G(x) = 1 and A2B2E2 occurs} 

< P{(pn{x + 1) - <f(x + 1) > g(*) 
40o 

and A2B2E2 occurs} 

f P{<^n(x) - <p(x) < ^fi- and A2.B2£2 occurs}      if ip{x + 1) < 20o 

+   < if ¥>(x + l) = 20o, 

k P{tpn(x) - <p(x) > 2"fM and A2-B2£
,2 occurs}    when x + 1 = a* and y?(a*) > 20O- 

(IV) On A2B2E2, for a;  € 52, 0 < tpn(x) <90+c<2d0, 

Di = P{6n(a:) = 1,£G0C) = 0 and A2B2E2 occurs} 

< P{<pn(x + 1) - <f(x + 1) < g(*) 
40o 

and A2B2E2 occurs} 

' P{<fn(x) - V?(a?) > 4ö^ 
and MB2E2 occurs} if p(z + 1) < 20o, 

+   < ifp(x + l) = 20o, 

H(«) 
b P{£n(x) - v(x) < -■$$), and ^2^2-^2 occurs }    if x + 1 = a* and t^(a*) > 2Ö0. 
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(V) 

D5  =  P{6n(a*) - l,8G(a*) = 0 and A2B2E2 occurs } 

<   P{vn(a* + 1) - ip{a* + 1) < JT-^- and A2B2E2 occurs } 

' P{$n(a*) - <p(a*) > ^P- and A2B2E2 occurs } if <p(a* + 1) < 20o, 

+    i 0 if ¥>(a* + l) = 20o, 

^ P{M"*) - ¥>(«*) < -2^+i) and ^52£2 occurs }    if ip{a* + 1) > 20o. 

(VI) 

£>6  =  £J^-(n)[/^l£2] 

=   P{(i>n <b*-lorbn>b* + l) and £2 occurs } 

=   P{bn <b* — 1 and E2 occurs } 

+   P{bn > b* + 1 and E2 occurs } 

=   P{<^„(6*) > 8Q — c and i?2 occurs } 

+   P{<£n(&* +2) <90 - c and i?2 occurs } 

=  P{<pn(b*) - v>(6*) > (0o - c) - ¥>(&*) and £2 occurs } 

+   P{<pn(b* + 2) - 9?(6* + 2) < 0O - c - (f(b* + 2) and £2 occurs }. 

Here, note that, by the definition of &*, (0o ~c)—</?(&*) > 0. Also, since the prior distribution 
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G is non-degenerate, by the definition of b* again, ($o — c) — <p(b* + 2) < 0. 

(VII)  D7  = Ex{n)[IBlE2] 

=  P{(an < a* — 1 or an > a* + 1) and E2 occurs } 

=  P{o.n < a* — 1 and E2 occurs } 

+   P{än > a* + 1 and E2 occurs } 

=  P{tpn(a* — 1)>9Q+C and E2 occurs } 

+   P{(pn{a* + 1) < do + c and E2 occurs } 

=  P{<pn(a* - 1) - <?(a* - 1) > (#o + c) - ¥>(a* - 1) and E2 occurs } 

+   P{(pn{a* + 1) - </?(a* + 1) < (#o + c) - (/?(a* + 1) and E2 occurs }. 

Note that, here, (0O + c) - <y?(a* - 1) > 0 while (ö0 + c) - <f(a* + 1) < 0. 

Based on the above analysis for D\ through D-j, to study the asymptotic behavior of 

the regret Bayes risk r(G,Sn) — r(G,So), it suffices to investigate the asymptotic behavior 

of the following: A\n(x) = P{ipn(x) — ip(x) > d{x) and E2 occurs } for b* < x < a*, 

and A2n(x) = P{tpn(x) - <p(x) < —d(x) and E2 occurs } for b* + 1 < x < a* + 1, where 

¥>(x) > d(x) > 0,6* < x < a* + l,c?(x) is a suitably defined positive function and its 

definition is implicitly contained in the form of upper bounds of Di,i = 1... 7, given 

previously. 

3.2 Lemmas 

In this subsection, we introduce certain lemmas which are helpful to investigate the 

asymptotic behaviors of A\n(x) and A2n(x). 

The following lemma is from Liang (1991). 

Lemma 3.1   Let {ae}^.-^ be a sequence of real numbers and {fr^}^ be a sequence of 

20 



nonincreasing positive numbers with 61 < 1. Then, for any positive constant c?, 
n n 

sup I \^ ai M > (>)d =>  sup I 2, a(\ > (>)^- 

Let i^ be the empirical distribution based on X(n)  =  (X\,... ,Xn) and F the 

marginal distribution function of the random variable X. 

Corollary 3.1  Let d be a fixed positive value and I be a fixed nonnegative integer. Then 

under Condition Cl, for n being sufficiently large, the following holds. 

(a) sup \[Kn{y) - K(y)} - [Kn(l - 1) - K(i - 1)]| > {>)d 
y>i 

=>  sup \Fn(y)-F(y)\ >(>)§. 
y>0 

(b) sup  |[0B(y) - tf(y)] - [0B(* - 1) - ^ - 1)]| > (>)d 
y>£ 

suV\Fn(y)-F(y)\ >(>)§. 

Proof:   Since en = o(n  1), under Condition Cl, there exists an integer N = N(d) such 
00 

that for n> N,en £]   w(x) < f. 
x=0 

Next, note that 

Kn{y) =   Yl hn^ w(x^ 
x=0 

i=0 ^   ' r=0 

* (y) = E /(*) 
w (x) 
a(x) 

Hence, for n being large enough such that en £)   w(x) < f, 

x=0 

x=0 

sup |[ÜTn(y) - K(y)] - [Kn{t - 1) - A'(£ - 1)]| > (>)d 
y>l 

=*   sup I J2 [/»(*) - f(x)]^l  +enJ2 »OOI > (>)<* 
»^    x=e a{x) x=t 

21 



(x) 0 

y>£      ^ a{x) 3 

y 9 

=$■   sup     y    [fn(x) — f(x)]\ > (>)_c^ by Lemma 3.1 under Condition Cl, 

=►   sup \[Fn{y)-F{y)]-[Fn{l-l)-F{t-l))\>{>)\d 
y>£ o 

=*    Sup   |jTn(y)-iT(y)| >(>) - 
j,>0 O 

Part (b) can be proved in a similar way. D 

Define d\(x) = <p(x) + d(x), d2(x) = <p(x) — d(x). Note that di(x) > 0, i = 1,2. For 

each y > or, define, 

qx(y) = d2(x)   J2  Kt)w(t) -J2   h(t + l)w(t). 
t=x t=x 

Also, for each z < x, define 

I X 

px(s) = -^   h(t + l)w(t)+d!(x)   J2h(t)w(t). 
t=z t=z 

Lemma 3.2   (a) qx(y) is decreasing in y for y > x. Hence, 

max qx(y) = qx(x)  =   h(x)w(x)[d2(x) - <p(x)] 
y>x 

=  h(x)w(x)(-d(x)) < 0. 

(b)  px{z) is decreasing in z for z < x. Hence, 

min   Px{z) = Px(x) =  w(x)h(x)[di(x) — ip(x)] 
0<z<x 

=  w(x)h(x)d(x) > 0. 
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Proof:   (a)   For y > x, consider 

qx(y + 1) - qx(y) =   d2(x)h(y + l)w(y + 1) - h(y + 2)w(y + 1) 

=   h(y + l)w(y + l)[d2(x) 
% + 2) 

h(y + 1) 

=   h(y + l)w(y + l)[<p(x) - d(x) - ip(y + I)} 

<0 

since <p{x) — <p(y +1) < 0 for y > x and G?(X) > 0. Hence, qx(y) is decreasing in y for y > x. 

(b)   For 2 < x, Consider 

Px(z) —Px{z — 1) =   h(z)w(z — 1) — di(x)/i(z — l)u;(.z — 1) 

=  /i(z - ivo - 1) h{z) 
h(z - 1) 

di(x) 

=   h(z - l)tü(z - l)[<p(z - 1) - <^(x) - d(x)] 

<0 

since c/?(z — 1) — <p(x) < 0 for 0 < z < x and d(x) > 0.  So, px(^) is decreasing in z for 

0 <z <x. D 

Let A^n(x) = ?/>„(x) - V»(ar), AKn 0) = A'ra(x) - A"(x) and AF„(I) = F„(x) - F(x). 

Lemma 3.3   (a) For each b* < x < a*, and n being sufficiently large, 

{ <pn(x) — f(x) > d(x) and E2 occurs} 

C{sup|A^y)|>^min(l,-^)}. 
j,>o o ai{x) 

(b)   For each 6* + l<x<a* + l, and n being sufficiently large, 

{ ifn(x) — <p(x) < —d(x) and E2 occurs} 

C   { Sup|AF„(y)|>-^min(l,-T^)}. j,>o 6 d2{x)/J 
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Proof:   (a) For b* < x < a*, by (2.20) and Corollary 3.1, for n being sufficiently large, 

{(pn(x) — f(x) > d(x) and E2 occurs} 

=   {(pn{x) > 9?(x) + d(x) = di(x) and E2 occurs} 

C   {[rl>n(x) - MV - 1)] - [Kn(x) - Kn{y - iMix) > 0 

for some x > y > mn and E2 occurs} 

C     U {[A^„(x) - A„n(y - 1)] - d!(x)[A^(x) - AKn(v ~ 1)] > Px{y)} 
y=Q 

C    U   {[A^B(x) - A^G/ - 1)] - diWAKnix) ~ AKn(y - 1)] > Px(x)} 
y=zQ 

C   sUo {[Afc(x) - A„n(ä, - I)] > HiM or [AK..(X) - AK„(» " DI < -^} 

e {s1? |^„(y)| > ^M or sup|A.„Cs,)| > 

(b) For each &* + 1 < x < a* + 1, by (2.16) and Corollary 3.1, for n being large enough, 

{(pn{x) — <f(x) < —d(x) and E2 occurs} 

=   {(pn < <f(x) — d(x) = d2(x) and E% occurs} 

C {[Mv) ~ M* ~ 1)] ~ d2(x)[Kn(y) - Kn(x - 1)] < 0 

for some x < y < Mn and E2 occurs} 

= {[Av,n(y) - A^(a: - 1)] - d2(x)[AKn(y) - AKn(x - 1)] < qx(y) 

for some x < y < Mn and E2 occurs} 

C {[A^„(y) - A^n(x - 1)] - d2(x)[AKn(y) - AKn{x - 1)] < qx(x) for some x < y} 
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C {A^n(y) - A*„(s - 1) < Mf) or [AK„(y) - AKn(x - 1)] > ~^~ for some z < y) 

C {sup |A,B(y) - A^n(x - 1)| > ^^ or sup |AA-n(y) - A*n(x - 1)| > ^LL} 
y>x * y>x ^<12{X) 

C {sup|AK(y)| > -^1, or sup|AFn(y)| > -^-} 

= {sup|AFn(y)| > -Mflmin(l,-i-)}. D 
y>o 0 «2^; 

3.3 Proof of Theorem 3.2 

Letr2 =     min      2^ min (l, j4-r), r3 = min ^|i*i min (l,^).  Note 

that both r2 and r3 are positive. Hence r = min(ri, r2, r3) > 0. 

From Lemma 3.3, for each b* < x < a*, 

P{(fn(x) — cp(x) > d(x) and E2 occurs} 

< P{sup |AF-(y)| > ^mintl,-^)} 
y>0 0 a\\X) 

<P{sup|AFn(y)|>r2} 
y>0 

(3.11) 

< d exp(—2nr|), 

by the exponential type inequality of Dvoretzky, Kiefer and Wolfowitz (1956), where d is 

a positive constant independent of the distribution function F. 

Also, for b* + 1 < x < a* + 1, from Lemma 3.3, 

P{(pn{x) — (f(x) < —d{x) and E2 occurs} 

< P{sup|AFn(y)| > ^lmin(l,-i-)} 
j,>0 D a2{x) 

<P{sup|AFn(y)|>r3} 
j/>0 

< d  exp(—2nr|). 
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Now, combining the results of Section 3.1, (3.7), (3.11) and (3.12), we conclude that 

r(G,8n)-r(G,8G) = 0( exp(-rn)). D 

4.   Example, Remarks and Further Results 

4.1 Examples 

We use the following two examples to illustrate the choice of the positive numbers 

{w(x)}T=o and demonstrate the asymptotic optimality of the empirical Bayes two-tail test 

Example 1.  (The Poisson distribution). Suppose that 

f(x\9) = e~99x/xl, x = 0, 1, 2, ...; and 0 < 9 < oo. 

Then, a(x) = i. Thus we let w(x) = a(x + £) = (j^yy, where £ is a fixed, positive integer. 

Then, both ^j and a^
)

1) are nonincreasing in x, bounded above by 1 and 
oo 

J2 w(x) < oo. Hence the requirements of Condition Cl are met. 
1=0 

Assume that the prior distribution G is a member of the family of gamma distribution 

with density function g(9\k,ß) of the form 

9(0% ß) = 777T 0*-1 e_/w, 0 < 9 < oo, * > 0,/? > 0. 

Then, <p(x) = f±|, which tends to oo as x -> oo. Therefore, for finite 0 < c < 90, a* < oo. 

Then, by Theorem 3.2, we have r(G,Sn) - r(G,8G) = 0(exp(-rn)) for some r > 0. 

Example 2   (The Negative binomial distribution). Suppose that 

f(x\9) = (X + r_-iy*(l-9Y, » = 0,1,2, ...;O<0<1, 

where r is a fixed, positive integer. Then a(x) = i**!^1). We let w(x) = ,*2, so that 

kQtk f[|) an(i a(L+i) are nonincreasing in x and bounded above by 1. Also 23 M^) < oo. 

Hence, the requirements of Condition Cl are met. 

Suppose that the prior distribution G is a member of the family of beta distribution 

with parameter (a,ß).  Then, <p(x) = 8+*^+r> which tends to 1 as x -> oo.  Thus for 
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0 < c < #o < 1 such that d0 + c < 1, a* < oo.  Therefore, by Theorem 3.2, r(G,8n) - 

r(G,6a) = 0(exp(—rn)) for some r > 0. 

Wei (1991) considered several situations about the behavior of the tail probability of 

the prior distribution G under which his proposed empirical Bayes test 8™ may achieve 

a rate near the best possible rate of convergence of order 0{n~l). We may also apply 

those conditions to the empirical Bayes test 8n. For example, under the assumption of 

Theorem 4.2 of Wei (1991), one can see that <p(x) —► oo as x —*• oo. Thus H(x) > 0 for 

x being sufficiently large and a* < oo. Therefore r(G,Sn) — r(G,8o) = 0(exp(—rn)) for 

some r > 0. We see that under the same conditions, 8n has a rate of convergence much 

faster than that of 8™. Basically, Wei's approach is along the line of Johns and Van Ryzin 

(1971), in which one needs to treat the asymptotic behavior of each term in an infinite 

series of the regret Bayes risk. Our approach is somewhat different from Wei's. We mimick 

the behavior of the unknown Bayes two tail test 8G, SO that one only needs to deal with the 

asymptotic behavior of finite terms of probabilities, which have been discussed in details 

in Section 3.1. 

If it is not possible or hard to find a sequence of positive numbers {w(x)}%LQ to satisfy 

the requirements of Condition Cl, we may consider the following alternative condition. 
oo 

Condition C2.   {w(x)}%L0 is a sequence of positive numbers such that  ^   ^f|f < oo, 
i=0 

oo .   . oo 

D sSfi) < °° and £ wix) < °°- 
x=0 x=0 

It should be noted that a sequence of positive numbers {w(x)}%L0 satisfying Condition 

C2 always exists. For example, we may let, for each x = 0,1,..., w(x) = ^xliMx^Mx+i)) Kx)i 
oo 

where {b(x)}^L0 is a sequence of positive numbers such that   Yl Kx) < °°-   Then it is 
i=0 

straightforward to verify that {w(x)}%L0 meets the requirements of Condition C2. 

Based on the analysis given in the Subsection 3.1, to study the asymptotic optimality 

of the empirical Bayes test 8n which is now constructed under Condition C2, one needs 

only to investigate the asymptotic behaviors of the following terms under Condition C2: 

P{ <fn(x) — <p(x) > d(x) and Ei occurs} for each x, b* < x < a* and 

P{ <£„(x) — (p(x) < —d(x) and E^ occurs} for each x, b* + 1 < x < a* + 1. 
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Let ß = \       min      Taxa.{\qx(x)\,px{x)). Then, ß > 0. Under Condition C2, there exists 
6*<i<a* + l 

a positive integer N = N(ß) > M such that for all y > x > N, the following hold, 

w(i) v(«* + i) £ SJ£<Ä 

V    w(i)    < 8 2-,    a(H-l)    ^ ^' 

[l + ^(a* + l)]   £   w(i)<ß. 
i=x 

Note that |/n(x) - /(x)| < 1 for all x. Therefore, by (4.1), for y > x > N, 

|A^n(y)-Av,n(x-i)| 

= IE [^(7TTy + en-^TI)lu;(01 

(4.1) 

w(i) 
< IE [/»(«' +!) - /(»+ ^^Ti)'+ 6n£ w(0 

i=i ^ ' i=x 
(4.2) 

< (1+ e„)/?; 

^a* + l)|AÄ-n(y)-AA'n(x-l)| 

^• + l)lE[^f + e.-SWOI 

< 9(a* +1)| £ [fn(i) - /(Ol^rl + ¥>(«* +1)«» I>(0 (4.3) 

< v(a* + 1)XZ 3f7T + ¥>(«* + 1)6» E "(0 r—'   au) r—4 

l=X v   ' 1=1 

< (1 + en)ß. 
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(4.4) 

Note that since en = o(n  x) for n sufficiently large, 2(1 + en) < 3. 

Following the proof of Lemma 3.3, for each x with 6* + l<x<a* + l, 

{<fn(x) — ip(x) < —d(x) and E2 occurs} 

oo 
c   U   {\^M - Af.Or - 1)] - d2(x)[AKn(y) - AKri(x - 1)] < qx(x)} 

y—* 

For each y>N + l, 

[A*„(y) - A^ix - 1)] - d2(x)[AKn(y) - AKn(x - 1)] 

= [A*„ (y) - A,„ (iV)] - d2{x)[AKn (y) - A*n (AT)] (4.5) 

+ [A*.(JV) - A^x - 1)] - J2(x)[AA-n(iV) - AKn(x - 1)] 

where | A^n(y) - A^n (iV)| < (1 + en)ß and d2(x)|A^„ (y) - AKn (N)\ < (1 + en)/3, by (4.2) 

and (4.3), respectively, and noting that 0 < ip(x) < <p(a* + 1) for x < a* + 1. Hence, for 

each y > N + 1, b* + 1 < x < a* + 1, for n being large enough so that 2(1 + e„) < 3, 

{[A^n(y) - A^(s - 1)] - d2(x)[AKn(y) - AKn(x - 1)] < qx(x)} 

C   {[A^(N) - A^(x - 1)] - d2(x)[AKn(N) - AKn(x - 1)] < ^M}, 

by noting that qx(x) < 0. Also, for x < y < N 

{[A^(y) - A^(x - 1)] - d2(x)[AKn(y) - AKn(x - 1)] < qx(x)} 

C   {[A^n(y) - A^x - 1)] - d2(x)[AKn(y) - AKn(x - 1)] < ^M}. 
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Combining (4.4)-(4.7) yields, for n being sufficiently large, that 

{(pn(x) — <p(x) < —d(x) and E2 occurs} 

C     U   {[A^M-^n^-l)\-d2(x)[AKM-AKn(x-l)}<^-} 
y=x I 

= {it ([/«(< +1) - Wn(oi - [/(< +1) - M*)fm^ 
i=x ^ ' 

y I \ 

+ en(l - d2{x)) Y^ w(i) < ^ELi for some 3 < y < N} 

C    {J2 ([Mi + 1) " *(x)/„(0] - W + 1) - * W(0])^T < ^ 

for some x < y < N] 

qx(x)a(i) 
C   {[/«(«' + 1) - d2(*)/»(«')l - [/(» + 1) " *(*)/(»)] < 4io(i)(JV -3 + 1) 

for some x < i < N}. 

Therefore, 

P{ipn(x) — <p(x) < —d(x) and E2 occurs} 

qx(x)a(i) 

(4.8) 

(4.9) 

< P{[fn(i + 1) - <fe(*)/„(i)] - [/(i + 1) - d2(x)f(i)} < ■ _ 

for some x < i < N} 

S^expi   Zn^w{t){N_x + 1)J   x(i + ^(a;))2>- 

The last inequality in (4.9) is obtained by an application of Hoeffding's inequality and 
n 

the following facts that fn(i +1) - d2(x)f„(i) = i  £ [■*"{»+!}(Xi) ~ d?W-fy}(Xi)1 > wiiere 
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I{i+1}(Xj) - d2(x)I{i](Xj),j = l,...,n, are iid, and E[I{i+1](Xj) - d2(x)I{i](Xj)] = 

f(i + 1) - d2(x)f(i), and -d2{x) < I{i+l}{X3) - d2(x)I{l](Xj) < 1. 

Next, for each z, b* < x < a*, from the proof of Lemma 3.3a, for n being large enough, 

{tfn(x) — <p{x) > d(x) and E2 occurs} 

C     U   {[AvJx) - A^B(y - 1)] - ^(x)[AKn(x) - AKn(v ~ 1)] > P*(*)} 
y=0 

= {± {[h^1 + «■ - ^ÜAco - * W t4f + «• - frl»») > F. M 
J=J/ 

a(z)       '    " a(i) 

for some 0 < y < x} 

a(i) a(i)- 

for some 0 < y < x} 

C    .Uo {[fn(i + 1) - di(*)/»(01 " [/(i + 1) - <*i(*)/(01 > 2wi)(x + l)]- 

(4.10) 

Therefore, by Hoeffding's inequality, 

P{ipn(x) — 9(s) > d(x) and £"2 occurs} 

<    E  P^(> + X) - *0O/»(O] - [/(« + 1) - d!(x)f(i)] > S^TT-J 
i=0 

2w(i)(x + l)J        (4.11) 

<   \] exp{—2n 
i=0 

px(x)a(i) 
2w(i)(x + 1) 

l2 

[l + d1(x)Y 
}• 

Let 

r4 =  2       min min 
gx(ar)a(») 

1X1J.J.X 11J.1XJ. I        . / .\ /  -XT ■* \ /-, 1     /       \\      I       ) 

6*+l<x<a*+l   x<i<N    \4:W(l)(N - X + l)(l + d2(x)) J 

7*5 =   2    min      min 
pz'(a:)a(i) 

6*<r<a*   0<i<*    \2w(i)(x + 1)(1 + di(x)) 
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Since N and a* are finite numbers, r4 > 0 and r5 > 0. Now combining the results of 

Subsection 3.1, (4.8) and (4.10) and noting again that both N and a* are finite, we can 

conclude the following theorem. 

Theorem 4.1 Suppose that / 82dG(d) < oo, Condition C2 holds, and a* is finite. Then, 

r(G,6n) - r(G,So) = 0(exp(—r6n)) where r6 = min(Ti, r4,r5) > 0. 
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